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Abstract—Lymphocytes, one of the leukocytes, i.e. white blood
cells play an active role in the immune system. In diagnos-
ing and treating diseases, histopathological images provide key
information. The number of lymphocytes in the image, their
distribution and type may indicate the presence of a specific
lesion. The detection and quantification of lymphocytes not
only supports the work of histopathologists, but also gives a
chance to monitor diseases or analyze the general condition
of the immune system. In this study, the impact of visual
quality on the performance of state-of-the-art algorithms for
detecting lymphocytes in histopathological images was examined.
Two datasets were utilized, and image modifications such as
blur, noise, sharpness, saturation, brightness and contrast were
applied to evaluate the performance of YOLOvVS and Detectron2
deep learning models. It was found that visual quality has a
significant impact on the performance of these algorithms, and
that high-quality images are necessary for accurate detection of
lymphocytes. These findings have significant implications for the
use of computational methods in digital pathology. The need for
careful attention to image quality in order to achieve reliable
results is highlighted.

Index Terms—histopathological images, digital pathology, lym-
phocyte detection, deep learning, state-of-the-art algorithms,
YOLOVS, Detectron2, image quality, blur, noise, sharpness,
saturation, brightness, contrast

I. INTRODUCTION

Histopathological images, which are images of tissue sam-
ples taken from a patient’s body, are an invaluable tool in
the diagnosis and treatment of diseases. Accurate detection of
lymphocytes, which are a type of immune cell, in these images
is critical for the diagnosis of certain conditions [11]. However,
the visual quality of histopathological images can greatly affect
the accuracy of algorithms in detecting lymphocytes.

In this research, the impact of visual quality on the perfor-
mance of state-of-the-art algorithms on detecting lymphocytes
in histopathological images was investigated. Two datasets
were employed and image modifications, including blur, noise,
sharpness, saturation, brightness and contrast, were systemat-
ically applied to evaluate the performance of YOLOVS [13]
and Detectron2 [25] deep learning models. The effect of
visual quality on the accuracy of these algorithms and any
potential issues that may arise when using them to analyze
histopathological images were determined.

Understanding the effect of visual quality on the perfor-
mance of algorithms for detecting lymphocytes in histopatho-
logical images is crucial for advancing the application of
computational methods in digital pathology. The findings of
this study have significant implications for the implementation
of computational methods in pathology and underscore the
importance of ensuring image quality for achieving reliable
results.

II. RELATED WORK

In the field of medical image analysis, the impact of
image quality on the performance of deep learning algorithms
has received increasing attention. While extensive research
has been conducted on natural images, there is still limited
knowledge of the effect of image quality on medical images,
particularly within the domain of digital pathology and the
crucial task of detecting lymphocytes.

In recent years, various studies have examined the effect of
image quality on deep neural networks in the natural image
domain. One study that examined the effect of image quality
on deep neural networks was published by Samuel Dodge and
Lina Karam [4]. The authors investigated how blur, noise, and
compression affect the performance of image classification
tasks. They found that blur and noise had a significantly
negative impact on networks’ performance, while the effect
of contrast and compression was less significant.

Other researchers have focused on improving the per-
formance of deep learning algorithms using various image
modification techniques. The literature has demonstrated the
criticality of properly preparing histopathological images prior
to utilizing neural network models, as the quality of the input
data significantly impacts the performance of the model [22,
17]. The work by Guerrero and Oliveira [8] proposed a
preprocessing stage with stain normalization to enhance the
accuracy of deep learning models in the lymphocytes detection
task. The proposed method was found to be one of the best-
ranked results in the state of the art. This research emphasizes
how preprocessing histopathological images can boost the
performance of deep learning models.

In the field of digital pathology, researchers have also
focused on developing specific deep learning models for lym-
phocyte detection. One such study (YOLLO) [20], proposed a



model tailored for detection of lymphocytes in histopathology
whole slide images (WSIs) stained with immunohistochem-
istry (IHC). The authors made modifications to the original
YOLO architecture, including simplifying the architecture
and implementing a guided sampling strategy. As a result,
detection and processing times were sped up. This research
highlights the potential of using object detection methods
for lymphocyte detection in histopathology. The study also
emphasizes the importance of considering the specific char-
acteristics of the image and the task at hand when designing
deep learning algorithms.

III. EXPERIMENTAL SETUP

In the following, the experimental setup utilized to conduct
experiments on the selected model architectures is described.
Details regarding the dataset and the data annotation that was
carried out to train models in an appropriate data format are
presented. The neural network architectures implemented in
the project are also outlined, and the results of their detection
predictions on degraded images are compared.

A. Datasets

In this research, the influence of visual parameters on the
quality of lymphocyte detection in histopathological images
was examined by utilizing two datasets. The first dataset em-
ployed was the Leukocyte Images for Segmentation and Clas-
sification (LISC) [19], which contains hematological images
taken from the peripheral blood of healthy individuals. These
images were classified into five classes of leukocyte images,
with a dimension of 720x576x3 pixels. The lymphocyte class
consisted of 52 images, which were provided with ground truth
for all images.

For the second dataset, a dataset from Andrew
Janowczyk [12] was selected. This dataset comprises
100 images of ER + BCa images scanned at 20x, with each
image measuring 100x100 pixels. An expert pathologist
identified the lymphocyte centers.

The datasets were combined, and each image was resized to
256x256x3 pixels. Lymphocytes in the images were manually
annotated using the Roboflow platform [5] based on the
annotations of specialists. The final dataset contains a total of
2858 lymphocyte determinations, which were split into: 53%
training set, 26% test set and 21% validation set.

B. Data preprocessing

Manual annotation of lymphocyte centers was conducted by
an experienced pathologist to obtain raw ground truth images.
In order to conform to the dimensions of the images on
which the model was trained, a process of resizing all images
to 256x256 pixels was performed. During this process, the
original image scale was maintained. Subsequently, manual
annotation of 152 lymphocyte images was carried out.

A Reinhard normalization method was used to normalize
the lymphocyte test dataset images. The Reinhard algorithm
was employed to match the color distribution of the source
image to the color distribution of the target image, which was

Raw Ground Truth Annotated Image

Fig. 1. A raw image of ground truth (from pathologist) and our annotated
image using Roboflow platform.
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Fig. 2. a) Raw test dataset with different stains; b) Target color base image;
¢) Normalized test dataset.

achieved through equalizing the mean and standard deviation
of the pixel values in each channel [3].

The impact of stain normalization on cell lymphocyte de-
tection was quantified by comparing the testing metrics before
and after the implementation of the Reinhard normalization
algorithm on the test dataset (Table I).

TABLE I
COMPARING METRICS ON TEST DATASET WITH REINHARD
NORMALIZATION
Original staining | Reinhard normalized staining
YOLOvS AP 84.46% 83.34%
Detectron2 AP 83.16% 83.43%
YOLOVS F1 87.62% 88.78%
Detectron2 F1 91.92% 91.26%

C. Models

In this paper, two machine learning frameworks were con-
sidered.

1) YOLOvS: the architecture was developed to predict
detected objects in real time. In this study, YOLOVS is
used as it was adapted to be a part of the Python Pytorch
library. It consists of three modules: the Backbone, Neck
and Head. The Backbone module is mainly used to extract
features from input image. It aggregates and forms image
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Fig. 3. The YOLOvV5 model architecture [23].

features at different granularities [23]. Model Neck is used
to generate feature pyramids which helps to identify the same
object with different sizes and scales. It consists of a series
of layers to mix and combine image features. The Head
module performs final object detection. It predicts anchor
boxes on features generating output vectors. Output vectors
contain class probabilities, objectness scores and bounding box
coordinates. YOLO family networks loss function is calculated
on objectness score, class probability score and bounding box
regression [24]. The YOLO neural network performs feature
extraction and object classification methods at the same time
during inference. In the YOLO network, images are divided
into NxN grids. Candidate boxes are equally distributed on the
x and y axis. The candidate boxes have object detection and
predict the confidence of the existence of the object in each
candidate box. Confidence scores reflect how confident the
model is that the box contains an object and also how accurate
is the prediction of the box. Authors defined confidence as
Pr(Object) x IOU(truth prediction) [18]. If no object exists in
that cell, the confidence score should be zero. In other cases,
the confidence score should equal the intersection over union
(I0U) between the predicted box and the ground truth.

Each bounding box consists of five predictions: X, y, w, h,
and confidence. The (X, y) coordinates represent the center
of the box relative to the bounds of the grid cell. The width
and height are predicted relative to the whole image [18].
Each grid cell predicts C conditional class probabilities. These
probabilities are conditioned on the grid cell containing an
object. There is only one set of class probabilities predicted
per grid cell, regardless of the number of boxes B. Scores
of probability of object occurence and how well the predicted
box fits the ground truth box are encoded into one result [18].
YOLO algorithm was used in the following application on
lymphocyte detection [20]. There are five versions of YOLO
v5 models. In this paper the model s is used to obtain
maximum time performance during inference to compare
faster model with other approaches. The weights file is about
14 MB in size, which is relatively small, however it has worse
performance.

2) Detectron2: In order to compare the impact of image
degradation on object detection between different networks
the Detectron2 framework was used which offers various
models. The RetinaNet model was selected [14]. It is an im-
provement of two existing models: Feature Pyramid Networks
(FPN) and Focal Loss. FPN networks are based on object
detection at varying scales in an image. Featurized image
pyramids are feature pyramids built upon image pyramids.
Images are subsampled into lower resolution with smaller
size. This process is compute and memory intensive, which is
why hand-engineered features were replaced by convolutional
neural networks (CNNs). In a CNN architecture after every
convolutional block feature maps decreases forming pyrami-
dal structure. Pyramidal structure is needed to get the most
accurate results. FPN combines low-resolution semantically
strong features with high-resolution semantically weak fea-
tures [14]. This is achieved by creating a top-down pathway
with lateral connections to bottom-up convolutional layers.
RetinaNet consists of four elements: the bottom-up pathway,
top-down pathway and lateral connections, classification sub-
network and regression subnetwork. The bottom-up pathway
is the feed-forward computation of the backbone convolutional
network, which computes a feature hierarchy consisting of
feature maps at several scales [14]. The top-down pathway
upsamples feature maps from higher pyramid levels. The
lateral connections merge top-down layers with bottom-top
layers with the same spatial size. Classification subnetwork
predicts probability of every object detected at each stage.
Regression subnetwork regresses offset for predicted box with
ground truth object. Another important element of RetinaNet is
Focal Loss. The Focal Loss is a new loss function that acts as
a more effective alternative to previous approaches for dealing
with class imbalance [15]. It assigns more weight to hard or
easily misclassified examples. Focal loss is an extension of
the cross entropy loss function that would down-weight easy
examples and focus training on hard negatives. In this project
weights of RetinaNet model are about 797 MB. The difference
between size of compared models matter in time of inference.
The YOLOVS algorithm inference is much faster but RetinaNet
from Detectron2 framework has more accurate prediction.



14x14
320x320 [256x256]

>

14x14

Fig. 4. The RetinaNet model architecture [14].

D. Application

In order to systematically evaluate the impact of different
image imperfections on the performance of lymphocyte detec-
tion algorithms, a specialized web application was developed
that facilitates the easy modification of various image param-
eters and observation of the resulting detections. The user-
friendly interface of the application enables the quick and easy
application of different image degradation techniques, such as
blur, noise, and contrast adjustments, and immediately allows
for the evaluation of the effect on the performance of the
YOLOVS and Detectron2 models.

In addition to providing a convenient platform for con-
ducting experiments, the application is also integrated with
an experiment tracking platform [1]. This allows for accurate
and comprehensive tracking of the performance of the models
under various conditions and the identification of patterns
and trends that may not be immediately apparent from visual
inspection alone. Through the use of this application, valuable
insights into the factors that influence the performance of
lymphocyte detection algorithms were gained and strategies
for improving their accuracy and robustness were identified.

IV. IMAGE DEGRADATION

The purpose of this section is to describe the image degra-
dation techniques that were applied to the test dataset in order
to evaluate the performance of the YOLOVS and Detectron2
models in the presence of various types of image imper-
fections. These imperfections included blur, noise, contrast,
sharpness, and brightness modifications. In order to apply
these modifications, various image processing techniques and
algorithms were used. The results of these modifications were
then used to evaluate the performance of the models.

A. Gaussian Blur

Blur is a common issue in image processing, and it can
significantly affect the performance of object detection algo-
rithms. Blur can be caused by various factors, such as camera
shake, out-of-focus subjects, or poor lighting conditions. In the
field of medical imaging, blur can be particularly problematic
during the digitization process of histopathological samples,
as the camera focus may vary in natural settings. A study
published by Arizona State University [4] found that blur has
a negative impact on image classification, particularly when
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compared to other degradation methods. The authors of this
study found that blur and noise had the greatest influence
on the performance of convolutional neural networks for
classification tasks. It is believed that blur interferes with the
ability of convolutional layers to locate edges at early stages
of feature abstraction, leading to inaccurate feature extraction
at the beginning of the network training process.

To mitigate the negative effects of blur on object detec-
tion, researchers have proposed various approaches, such as
augmenting the training dataset with blurred images [16]. By
increasing the robustness of the model to blur, it is expected
to improve the performance of object detection in real-world
scenarios, where blur is a common issue.

To simulate blurring and examine its impact on lymphocyte
detection, the Gaussian kernel was used, a method as described
in Gwosdek et al. [9]. This method convolves the image with
a Gaussian kernel, which is a matrix of weights generated
based on a specified standard deviation. The size of the
kernel is determined by the radius parameter, which specifies
the standard deviation of the Gaussian distribution. A larger
radius will result in a larger kernel and more smoothing,
while a smaller radius will result in a smaller kernel and less
smoothing. In our experiments, the kernel standard deviation
was varied to study the effect of different levels of blur on
the performance of the object detection algorithms. Figure 5
shows the same image with different levels of blur applied,
demonstrating the visual impact of this image degradation
method.

B. Noise

The next image degradation parameter that was tested is
noise. Noise causes unwanted effects on the image such as arti-
facts, unrealistic edges, invisible lines, corners, blurred objects
and distorts background scenes. In this paper, the influence
of three selected noises - Gaussian noise, Speckle noise and
Salt and Pepper noise on the performance of state-of-the-
art algorithms for detecting lymphocytes in histopathological
images was examined. These three types help to simulate
noisy images taken by non-high quality or malfunctioning
cameras. The range of noise parameters was increased as in
the presented work [21].

Gaussian noise: is statistical noise with a probability den-
sity function equal to the normal distribution, also known as
the Gaussian distribution. The random Gaussian function is



Fig. 5. Example images from the test dataset with different levels of Gaussian
blur applied - radius size: 1.0, 1.5, 2.5, 3.0, 3.5, 4.5, 5.0, 5.5, 6.0, 7.0, 8.0
and 9.0

added to the image function to generate this noise. It is also
called electronic noise because it is generated in amplifiers or
detectors. The source is the thermal vibrations of atoms and
the discrete nature of the radiation of warm objects [2]. The
range used to add Gaussian noise was started with variance
0, which is the original image, and then increased to variance
2.56 using log space. The results of the image with noise are
shown in Figure 6.

Fig. 6. Example images from the test dataset with different levels of Gaussian
noise applied - variance values: 0, 0.01, 0.02, 0.03, 0.05, 0.09, 0.16, 0.28, 0.49,
0.84, 1.47 and 2.56.

Speckle noise: multiplicative noise. It can be generated by
multiplying random pixel values by different pixels of the
image. The presence of this noise is a fundamental problem in
optical holography and digital image reconstruction. Speckle
noise can appear in an image similarly to Gaussian noise, and
its probability density function follows gamma distribution
[2]. Like in the Gaussian noise equation, the variance is a
variable that has been changed to control how much noise is

present in the image, which ranges from 0 to 15 as shown in
Figure 7.

Fig. 7. Example images from the test dataset with different levels of Speckle
noise applied - variance values: 0, 0.03, 0.06, 0.1, 0.19, 0.36, 0.67, 1.25, 2.32,
4.33, 8.06 and 15.0

Salt and Pepper Noise: is also known as data drop noise,
because it causes the original data values to drop. S&P noise
is randomly distributed over the image and can only be a
minimum (pepper) or maximum (salt) value in a typical image
range [0, 255] [21]. The amount of S&P noise within the
images was modified using a random, uniform distribution of
half salted pixels and half peppered pixels. As shown in the
Figure 8, the noise level started with 0% of noisy pixels and
increased to 50% over time.

Fig. 8. Example images from the test dataset with different levels of Salt and
Pepper noise applied - the percentages used in this range: 0%, 5%, 9%, 14%,
18%, 23%, 27%, 32%, 36%, 41%, 45% and 50%.

C. Sharpness

Sharpness is inversely related to blur which is typically
determined by the spread of edges in the spatial domain,



and accordingly the attenuation of high frequency components
[26]. Digital images have limitations of distinguishment lines
of contrast with such clarity and sharpness as human eye.
Sensors of digital cameraa are limited by the number of pixels
and their range of values. Sharpness is a combination of two
factors: resolution and acutance. Resolution is straightforward
and not subjective. It depends on the number of pixels in the
image file. All other factors equal, the higher the resolution
of the image, the sharper it can be. Acutance is a subjective
measure of the contrast at an edge. Image sharpening is
performed by applying image convolution with mask with
specified parameters mentioned in [6] or by applying al-
gorithm presented in [7]. To perform image sharpening the
Python Pillow ImageEnhance module was used with specified
sharpening factors. The factor value ranged from 1.0 to 12.0
with a 1.0 step. As in previous parameter, library component
preserves the original image with factor value 1.0. Models
evaluation is presented below.

Fig. 9. Examples image from the test dataset with different levels of of
sharpness applied - sharpness levels: 1, 2, 3,4, 5,6, 7, 8,9, 10, 11 and 12

D. Saturation

Another image parameter considered in data augmentation
is color saturation. It adjusts how vibrant the image is. Satu-
ration is the amount of gray mixed in with the pure colors in
each pixel. A fully desaturated image is grayscale and a highly
saturated image contains more pure colors. An increased
saturation shifts colors more towards the primary colors while
decreased saturation mutes colors up to grayscale. Adjusting
saturation to images during the data augmentation process can
help models perform when the colors are affected by weather
conditions. Selected models were evaluated on a modified test
dataset. FFor this purpose the Pillow ImageEnhance module
was used to change the saturation of images. Exact factor
values applied to methods and model results are given below.
The factor value ranged from 0.25 to 1.0 with a 0.25 step. A
value of 1.0 preserves the original image. Then, the factor was
increased to 5.0 with a 1.0 step.

E. Brightness

Image brightness is one of the simplest pixel value modifica-
tion to perform on. Modifying brightness can be accomplished
by multiplication between pixels values with a specified ratio.
Discrimination between different intensity levels on image is
an important consideration. The range of light intensity levels
to which the human visual system can adapt is wide from
the scotopic threshold to the glare limit [7]. Computer colors
representation are more limited. The proper settings of image
brightness modification can lead to increased model ability
to generalization and birightness independence. Brightness
manipulation on images allows us to generate new images
samples in dataset. This allows us to generate images with a
range from black to white. Spot brightness modification can
lead to add shadow or bright spots to simulate complicated
light condition in real situation. To perform brightness modi-
fication the Pillow module was used to manipulate brightness
over dataset images to analyze how this parameter affects
lymphocyte detection between two selected models. The factor
value ranged from 1.0 to 9.0 with a 1.0 step. As in previous
parameter, library component preserves the original image
with factor value 1.0. Models evaluation is presented below.
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Fig. 10. Example images from the test dataset with different levels of

brightness applied - the percentages used in this range: 0%, 10%, 20%, 30%,
40%, 50%, 60%, 70%.

F. Contrast

Contrast is the electro-optical parameter of the image,
which determines the ratio of the maximum luminance to the
minimum luminance. When the contrast adjustment is raised,
the image will have a higher percentage of dark pixels and
whites (middle pixel values are eliminated). Contrast reduction
is obtained by blending the input image with a gray image
[10].

output = (1 — alpha) - image + alpha - image (1)

This equation was used to change images contrast. Alpha
is a key factor, that has been changed in range from 0.1 to
3.0. The experiment was started with an alpha value 0.1, next
from an alpha value of 0.2 to 2.0 in steps of 0.2. Then, the
alpha value was increased to 2.5, where last step was 3.0. An
alpha value of 1.0 is the same as in other image degradation
experiments present the original image.



Fig. 11. Example image from the test dataset with different levels of contrast
applied - contrast value: 0.1, 0.2, 0.4, 0.6, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0.

V. EXPERIMENTS AND RESULTS

The purpose of the experiments in this study was to in-
vestigate the impact of various image imperfections on the
performance of state-of-the-art object detection algorithms. To
do this, a test dataset of 32 images was selected and various
modifications were applied to them, including blur, noise,
sharpness, saturation, brightness and contrast. The remaining
original data was used for training both the YOLOvVS and
Detectron2 models. The performance of the models was then
measured using metrics such as Average Precision (AP) and
Fl-score. On the test dataset, both models were predicted with
a confidence threshold of 0.2. The average precision metric
was calculated with the IoU parameter set to 0.7.

In the following subsections, the results of these experi-
ments and discuss their implications for object detection in
the context of histopathological images are presented.

1) Gaussian Blur: The results of applying Gaussian blur
on the test dataset are shown in Table II. The blur radius
size is varied from 0.5 to 9, and for each size, the Average
Precision (AP) and F1-score are calculated for both models.
As the radius size of the Gaussian blur increases, the average
precision and Fl-score of both YOLOvS and Detectron2
decrease starting from radius equal to 1. This suggests that
as the level of blur in the images increases, the ability of
both models to accurately detect objects decreases. This is
consistent with previous research that has shown that blur can
significantly degrade the performance of deep neural networks
for image classification tasks [4].

It is worth noting that both models experienced a more
significant decrease in performance at radius sizes above 5,
with YOLOVS5 reaching 0% average precision at radius size
9 and Detectron2 reaching 0% at radius size 6. This suggests
that there is a threshold for the level of blur that the models can
tolerate before experiencing a significant drop in performance.

2) Noise: The results of the applied noise are presented
in the following tables — Gaussian Noise Table III, Speckle
Noise Table IV and Salt and Pepper Noise Table V. For

TABLE 11
METRICS ON TEST DATASET WITH GAUSSIAN BLUR APPLIED
Radius YOLOvS Detectron2| YOLOvS Detectron2
size AP AP FI FI
0.5 83.82% 82.20% 87.65% 91.86%
1 81.02% 82.63% 88.63% 91.24%
1.5 80.84% 83.25% 84.10% 89.85%
2 76.87% 77.56% 80.67% 85.29%
2.5 65.16% 72.87% 77.02% 81.34%
3 59.24% 63.57% 68.40% 65.90%
3.5 53.04% 48.43% 62.41% 55.15%
4 45.33% 39.46% 46.46% 28.66%
4.5 32.42% 16.15% 35.80% 4.49%
5 25.17% 1.66% 21.64% 4.02%
5.5 20.49% 1.65% 4.25% 1.91%
6 18.25% 0% 0.03% 0.06%
6.5 17.71% 0% 0% 0.01%
7 15.76% 0% 0% 0%
7.5 6.25% 0% 0% 0%
8 3.13% 0% 0% 0%
8.5 3.12% 0% 0% 0%
9 0% 0% 0% 0%

higher values of overlaid noise degradation, a significant visual
decrease in image quality and loss of important image features,
i. e. loss of lymphocyte cell edges was observed due to
introduced disturbances. After the experiments, an overall
decrease in lymphocyte detection capacity for both models was
observed. Compared to Retnianet, the YOLO model achieves
both higher values of Average Precision and F1-score.

TABLE III
METRICS ON TEST DATASET WITH GAUSSIAN NOISE APPLIED
Variance YOLOvS Detectron2| YOLOvS Detectron2
AP AP FI Fi

0 83.24% 83.55% 87.56% 92.00%
0.01 83.37% 74.91% 87.76% 83.28%
0.02 79.32% 64.48% 87.48% 78.19%
0.03 78.47% 70.04% 85.79% 80.48%
0.05 74.51% 50.94% 83.25% 66.05%
0.09 63.92% 25.77% 64.70% 31.74%
0.16 32.65% 16.44% 33.76% 12.44%
0.28 2.05% 1.47% 7.43% 1.25%
0.49 1.83% 0% 0.60% 0%

0.84 0.10% 0% 0.17% 0%

1.47 0% 0% 0% 0%

2.56 0% 0% 0% 0%

TABLE IV
METRICS ON TEST DATASET WITH SPECKLE NOISE APPLIED
Variance YOLOvS5 Detectron2| YOLOvS Detectron2
AP AP Fl Fl

0 83.24% 83.55% 87.56% 92.00%
0.03 82.21% 69.70% 87.05% 83.43%
0.06 78.34% 67.45% 87.43% 76.12%
0.1 76.36% 44.99% 80.63% 65.84%
0.19 54.70% 30.96% 56.90% 38.87%
0.36 21.09% 16.93% 36.96% 29.92%
0.67 13.17% 10.91% 26.46% 19.62%
1.25 6.04% 5.00% 18.46% 7.90%
2.32 1.09% 1.20% 8.93% 2.46%
4.33 0.46% 0% 2.37% 0%

8.06 0.01% 0% 0.48% 0%

15 0% 0% 0% 0%




TABLE V

METRICS ON TEST DATASET WITH SALT AND PEPPER NOISE APPLIED
Noise YOLOvS Detectron2| YOLOvS Detectron2
range AP AP F1 FI
0% 83.24% 83.55% 87.56% 92.00%
5% 80.93% 67.11% 86.85% 82.17%
9% 79.38% 48.10% 85.05% 55.40%
14% 66.62% 30.62% 77.77% 35.00%
18% 66.84% 22.00% 63.10% 29.58%
23% 37.30% 15.47% 52.51% 16.58%
27% 32.70% 7.63% 36.29% 8.89%
32% 23.06% 4.50% 17.56% 4.31%
36% 16.17% 1.96% 13.12% 2.30%
41% 1.06% 0.94% 5.70% 0.45%
45% 1.09% 0.33% 3.17% 0.60%
50% 0.23% 0% 0.70% 0%

3) Sharpness: The results of images sharpness modification
are shown in Table VI. To perform image sharpening the
sharpness factor value was ranged from 1.0 to 12.0 with a
1.0 step. The value of factor 1.0 preserves quality of the
original image. Both models lose their detection capability
as the parameter increases. The YOLO model has a greater
Average Precision value over test dataset modifications. The
Retinanet model has a higher F1 score during this test.

TABLE VI
METRICS ON TEST DATASET WITH SHARPNESS MODIFICATION APPLIED

Sharpness | YOLOvS Detectron2| YOLOvS Detectron?2
level AP AP Fl Fl

1 83.20% 83.58% 87.56% 92.05%

2 83.01% 82.13% 87.38% 91.33%

3 83.67% 80.90% 85.67% 90.23%

4 82.31% 75.01% 85.11% 87.92%

5 81.93% 73.02% 83.33% 88.19%

6 75.10% 73.03% 83.24% 84.91%

7 74.00% 71.24% 81.67% 84.09%

8 68.60% 70.98% 80.95% 83.80%

9 67.46% 69.78% 78.17% 81.04%

10 59.95% 65.88% 74.04% 77.40%

11 58.50% 63.52% 70.79% 77.14%

12 52.57% 56.98% 66.48% 74.92%

4) Saturation: The results of image saturation modification
are shown in Table VII. This test was performed by increasing
the saturation factor value from 0.25 to 1.0 with a step of 0.25.
The value of 1.0 preserves the original quality of the image.
Then, the factor value was increased to 5.0 with a 1.0 step. The
detection capability loss is observed with both an increase and
a decrease in the parameter value. Both metrics were higher
for the Retinanet model for parameter values greater than 0.75.

5) Brightness: The results of images brightness modifi-
cation are shown in Table VIII. This test was performed
by increasing the saturation factor from 1.0 to 8.0 at step
1.0. The factor value of 1.0 preserves the original quality
of the image. The metrics of both models decrease as the
parameter increases. With a parameter value of 8, both models
has Average Precision value less than 50%. The YOLO model
has higher Average Precision value and RetinaNet has higher
F1 score during this test.

6) Contrast: The results of modifying image contrast on
the test dataset are shown in Table IX. The Alpha parameter

TABLE VII
METRICS ON TEST DATASET WITH SATURATION MODIFICATION APPLIED

Saturation | YOLOvS Detectron2| YOLOvS Detectron2
level AP AP Fl FI

0.25 74.40% 69.18% 86.91% 73.89%
0.5 80.61% 75.87% 88.00% 91.49%
0.75 83.25% 83.25% 88.62% 92.04%

1 83.20% 83.58% 87.56% 92.05%

2 76.33% 78.96% 74.60% 79.80%

3 67.86% 74.54% 49.70% 68.56%

4 44.47% 73.38% 45.10% 59.21%

5 33.95% 71.07% 38.93% 52.34%

TABLE VIII
METRICS ON TEST DATASET WITH BRIGHTNESS MODIFICATION APPLIED

Brightness | YOLOvS Detectron2| YOLOvS Detectron?2
level AP AP FI FI

1 83.20% 83.58% 87.56% 92.05%

2 82.01% 78.42% 88.21% 91.74%

3 79.26% 75.07% 91.20% 89.95%

4 75.79% 76.79% 90.97% 87.39%

5 71.59% 60.57% 86.82% 85.17%

6 68.31% 58.42% 79.38% 82.17%

7 55.63% 51.39% 67.68% 72.40%

8 49.16% 39.57% 61.71% 59.89%

is in range from 0.1 to 3.0, and for each iteration, the Average
Precision and F1-score are calculated for both models. When
the contrast value decreases below 1.0, the AP and F1-score of
both YOLOVS and Detectron2 also decreases. This suggests
that if the contrast decreases, both models have more and more
difficulty in lymphocytes predicting. For Alpha parameter =
0.1 both models were unable to detect lymphocytes.

It is worth noting that both models F1 scores remained
at about the same level when the contrast was increased. At
the same time, AP metrics of both models scores noticeably
deteriorated.

TABLE IX

METRICS ON TEST DATASET WITH DIFFRENT CONTRAST
Contrast YOLOvS Detectron2| YOLOvS Detectron2
level AP AP Fl Fl
0.1 0% 0% 0% 0%
0.2 0% 8.93% 0% 0.59%
0.4 49.16% 64.78% 30.54% 75.11%
0.6 78.18% 78.84% 80.15% 88.91%
0.8 83.90% 82.72% 86.85% 90.77%
1 83.43% 83.16% 87.62% 91.92%
1.2 80.59% 82.12% 87.29% 91.75%
1.4 78.15% 79.14% 86.36% 91.52%
1.6 75.94% 76.73% 85.74% 91.40%
1.8 77.80% 80.24% 87.74% 91.03%
2.0 77.75% 74.04% 87.44% 91.04%
2.5 72.90% 72.70% 88.15% 90.88%
3.0 69.91% 69.43% 88.36% 89.97%

VI. DISCUSSION AND CONCLUSION

In this study, the effect of image quality characteristics
on the detection of lymphocytes in histopathological images
using state-of-the-art algorithms was evaluated. The results
indicated that parameters such as image blur, noise, contrast,



brightness, saturation, and sharpness have a significant impact
on the performance of these algorithms. Specifically, it was
observed that images with higher levels of blur, lower contrast,
and lower sharpness resulted in reduced detection rates of
lymphocytes. A higher AP metric was for the YOLO network
and a higher F1 metric was for RetinaNet from Detectron2.
The RetinaNet model detects objects with greater precision on
the test dataset but with worse inference performance than the
YOLO network. The use of a specific model depends on the
purpose of the application and the conditions under which it
could be launched.

Furthermore, the results demonstrated that the performance
of the algorithms varied depending on the specific method em-
ployed. For instance, the algorithm that performed optimally
on images with high blur was not the same as the algorithm
that performed optimally on images with low contrast. This
highlights the importance of considering the specific visual
quality characteristics of an image when selecting an algorithm
for lymphocytes detection.

These findings have significant implications in the field
of histopathological image analysis. They underscore the
importance of maintaining optimal image quality during the
digitization process of histopathological samples, such as
by ensuring proper focus of the camera to minimize blur.
Poor image quality may compromise the accuracy of object
detection models, leading to unreliable results in lymphocyte
detection task.
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